

• Mikko
Mikko Varpiola is the test suite developer n:o 1 at Codenomicon and Director of Special
Operations. His area of world class expertise is in anomaly design. Mikko knows what to feed
into software to make it fail. Prior to Co-founding Codenomicon, Mikko worked as a researcher at
the Oulu University Secure Programming Group (OUSPG). He is the author of the ASN,1
encoding anomalies first deployed in widely recognized PROTOS LDAP and SNMP test suites.

• Nate
Dr. Nate Kube is Co-founder and CTO of Wurldtech Security Technologies, Inc. where he
oversees the development of advanced security technologies for the SCADA and process control
domains. He is a expert in formal test methods, embedded systems testing, functional and
declarative languages, and fault-tolerant computing. Dr. Kube has co-authored a number of best
practices for the Industrial Automation Security sector, is a voting member of ISA SP99, and his
research efforts have been heavily funded by Canadian, American, and International Government
agencies. Dr. Kube holds a BSc in Mathematics and PhD in Computer Science.

Premiere - BIOs

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Software Test (and fuzzing’s role in it all)

• Short history of fuzzing (I am therefore I fuzz)

• Key challenges

• Typical misconceptions

• The future is non deterministic (it’s evolution baby)

• Demonstration

• Wrap-up and Q/A

Thank god it's Friday again - Outline

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Software Test

• Verification: task of showing that a software system is free from errors

• Useful to divide bugs into 2 categories: faults and failures

• failure: incorrect system behaviour (incorrect output)

• fault: static defect in source code

• Two complementary approaches to verification: source code review uses manual
analysis to find faults and testing uses program execution to find failures.

• The dual nature of testing and review can be summarized as:

• Testing
Pro - Many tasks are automatable, Results are guaranteed
Con - Results are specific, Must trace from failure to fault (debugging), Applies
to executable products only

• Review
Pro - Automation is difficult, Results are suspect
Con - Results are general, No fault-to-failure tracing required, Executability
not required.

Crackers Don’t Matter - Faults, Failures,
and Verification

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Test automation is heavily influenced by two factors: Controllability and
Observability.

• Controllability refers to the ease with which inputs may be supplied to the
device-under-test (DUT) whereas Observability refers to the ease with
which outputs from the DUT may be observed.

• Controllability and Observability are useful in two important ways:

• Controllability and Observability help testers to predict test
automation problems

• Controllability and Observability help testers identify opportunities for
cost reduction

• C&O necessary but not sufficient for successful automation, correlation b/w
input and output required (automated test oracles).

Through the looking glass – Test Automation

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• More important than “when” is “type of fault”

• Software artefact dictates test method which dictates type of faults discovered

• Infamous Pentium bug (1994) (unit test)

• Ariane 5 rocket (1996) (system test)

• Mars lander (1999) (integration test)

La Bomba – Fault What?

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

SW QUALITY / QA
When done during SW development

Done By:

In-house test teams, developers themselves, QA
teams and sometimes third party consultants

Results Are:

Usually just Bugs! They can be handled as part of
normal SDLC. Almost never published – some
challenges when large amounts of SW already out.

They've got a secret - Fuzzing is...

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

SW RELIABILITY / SECURITY
After it is delivered / shipped / used

Done By:
 Organizations to verify their networks and systems,

 Individuals, security professionals and non professionals for fun and
profit

 Security houses and consultants

 Found issues usually cant be fixed by who found them

 They have to be reported, publicly or discreetly

 Patches has to be issues, tested, distributed,...

Results Are:

 Individuals

Enterprises,
businesses,
governments

Used by

Home on the remains - ...or bluntly put!

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Often equivalent of using a napalm strike to kill an insect.
Or being in the business of breaking software and
systems. Which is very, very FUN by the way!!!

[Images from images.google.com]

• Flaw: deviation from intent

• <1 flaw per kLoC is world class (like our code of course)

• 0.1 per kLoC for Shuttle code

• 30-100 per kLoC for commercial software

• Sometimes easy sometimes hard to correlate to failure rate

• 70-85% of flaws found post unit test are requirements errors

The ugly truth - Flaw Densities (known)

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Short History of Fuzzing

• Wikipedia: http://en.wikipedia.org/wiki/Fuzz_testing

• Fuzz testing or fuzzing is a software testing technique that provides random data ("fuzz") to the
inputs of a program. If the program fails (for example, by crashing, or by failing built-in code
assertions), the defects can be noted.

• Bit of a shallow...is it?

• Standard Glossary of Software Engineering Terminology, IEEE: “The degree to which a system or
component can function correctly in the presence of invalid inputs or stressful environmental conditions.”

• IETF: Security: “The condition of system resources being free from unauthorized access and from
unauthorized or accidental change, destruction or loss.” [RFC2828]

• Bottom line:
• Fuzzing is a software testing method which uses various methods and technologies to perform

negative testing on the system (usually not requiring source code). Found issues are implementation
level (security or quality) issues, e.g. How someone has implemented the system – not usually how it
was designed.

The hidden memory – Definition

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

http://en.wikipedia.org/wiki/Fuzz_testing

• Barton Miller, University of Wisconsin-Madison (1990)

• VLSI folks call this fault injection, much older

• What, when, how, whom

• http://www.owasp.org/index.php/Fuzzing

• Does not concern state, or message structure, or oracles

• Only repeatable part is random seed used to start random sequence

• 32bit message == 2^32 test cases

• NOTE: Frameworks vs. Purpose build...

That Old Black Magic – old skool fuzzing

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

http://www.owasp.org/index.php/Fuzzing
http://www.owasp.org/index.php/Fuzzing

• Understands protocol structure

• Simple rule libraries

• Some support for multi message / stateful protocols

• A lot of effort here – this is currently where scene is mostly

• It is very effective – oh we know

• Examples

• Frameworks: Peach 1.0, GPF, Autodafe, most others

• Application specific: PROTOS, 802.11 fuzzers, ...

PK Tech Girl – advanced fuzzing

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• High degree of C&O with automated oracle generation

• Model/grammar based

• Understand protocol semantics, extensive rule library

• Determine and calculate CRCs, lengths, protocol structures...

• Understand protocol states, functionality

• Test message in right/incorrect state

• Monitoring capabilities to monitor SUT, DUT and IUT

• Feedback mechanisms to optimize test design and test
execution (source/binary analysis, protocol behaviour analysis, vulnerability sources,
historic data...)

I Do, I Think - What are real fuzzers made of

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Key Challenges

• We are testing how the tested systems are handling unexpected and malformed
input

• In most practical applications the input space is roughly Infinity

• It must be somehow limited to finite and reasonable Size

• Difficulties defining coverage,
or what constitutes enough?

• Testing Clients (controllability)

Infinite possibilities – fuzzing challenge

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Imaginary control system, with some constraints

• Stateless

• IP/UDP based; uses UDP port 31337

• Protocol is defined as:

Incubator - "Simple" protocol example;
combinatorial explosion

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Picture if you will - Resulting ”design” could
look like...

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

State machine Pseudo code:

So it would seem that there is 5 meaningful and maximum 256 (2^8) test
cases? Not quite!!!

• UDP can carry up to 64k of data (instead of 1 byte defined
here)

• What if messages are delivered too quickly?

• Or too slowly?

• There may be no data inside UDP packets...

• State machine does not exist, but if it would...

• Now – if protocol would use 32bit integers instead of 8bit
integers – basic value range would already be 2^32 to start
with!

A not so simple plan - How Come?

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Fuzzing multiple fields/elements explodes input space

• All possible combinations of two 8bit fields == 2^8 * 2^8 tests == 65535 test
cases

• With 32bit fields, this would be 18446744065119617025 test cases! :D

• However sometimes useful!

• You have to know what to do!

• Human is good in telling which fields are interrelated. Machine is usually not.

• Does this really find many more problems?

• Yes it does

• Many? Not really. Depends on protocol, implementation, and so on.

We're so screwed – fuzzing two or more
fields at a time

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Where are the errors, anyone?

Season of death - two fields fuzzed - Code
example #1

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

...Different destinations - Two fields fuzzed -
Code example #2

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

PART OF GIF file format specification What if we have following pseudo
code:

Width and Height are 16bits ==> Max width or height
is 64k.Attacking both can increase malloc to 0xffff x
0xffff == 0xFFFE0001 (4294836225) bytes.
Attacking bit depth at the same time (in different GIF
block) will increase the amount of reserved memory.
Now malloc may actually fail!! And if return value of
malloc is not checked, then you are in trouble!

• Another area of debate is whether fuzzing simultaneously on multiple protocol
layers makes sense..again..causes input space explosion!

• Will this increase test efficiency? Generally speaking NO (but it may...)

• It may have potential of finding something missed due to bad test case design

Losing time - Multiple levels of freedom

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Typical misconceptions

• We have CRCs or other message checksums – so we are
protected

• We use cryptography so we are completely protected (and
out key exchange is ultra secure)

• I have AV, firewalls and IPS/IDS – I am protected

• Our networks are not accessible to outsiders

• ...but large number of security breaches are due to evil insiders

• ...or anyone ever had a broken NIC or switch causing network to melt down

Dream a Little Dream – typical
misconceptions

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• We have CRCs or other message checksums – so we are
protected

• We use cryptography so we are completely protected (and
out key exchange is ultra secure)

• I have AV, firewalls and IPS/IDS – I am protected

• Our networks are not accessible to outsiders

• ...but large number of security breaches are due to evil insiders

• ...or anyone ever had a broken NIC or switch causing network to melt down

Prayer – typical misconceptions

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

INCORRECT – The checksums protect against transmiss ion errors .

Attacker can re-calculate the checksums to match the payload.
Or someone may read the spec and implement it differently
while checksums s till validate!

• We have CRCs or other message checksums – so we are
protected

• We use cryptography so we are completely protected
(and out key exchange is ultra secure)

• I have AV, firewalls and IPS/IDS – I am protected

• Our networks are not accessible to outsiders

• ...but large number of security breaches are due to evil insiders

• ...or anyone ever had a broken NIC or switch causing network to melt down

Relativity – typical misconceptions

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

INCORRECT – encryption protects against eavesdropping and
alteration of message data (while in trans it).

Attacker can establish cryptographic tunnel and run the attacks
through the tunnel!

PLUS ! Cryptographic protocol and key exchange may be attacked
by themselves.

The ugly truth – typical misconceptions

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• We have CRCs or other message checksums – so we are
protected

• We use cryptography so we are completely protected (and
out key exchange is ultra secure)

• I have AV, firewalls and IPS/IDS – I am protected

• Our networks are not accessible to outsiders

• ...but large number of security breaches are due to evil insiders

• ...or anyone ever had a broken NIC or switch causing network to melt down

INCORRECT – targeted attacks created based on 0day (fuzzing)
exploits are practically imposs ible to be detected by any exis ting
technology. They protect you against the script kiddies and after the
fact (ok...to be fair – there are some interesting technologies here too).

Infact AV, Firewalls , IPS /IDS will add an additional layer of components
that may become security threats by themselves (as protocol
implementations, they need to ”peek” ins ide data that is sent and
received, making them poss ible weakest links ...)

Self inflicted wounds – typical
misconceptions

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• We have CRCs or other message checksums – so we are
protected

• We use cryptography so we are completely protected (and
out key exchange is ultra secure)

• I have AV, firewalls and IPS/IDS – I am protected

• Our networks are not accessible to outsiders

• ...but large number of security breaches are due to evil insiders

• ...or anyone ever had a broken NIC or switch causing network to melt down

FAIR ENOUGH! Have you though of likelyhood of evil
ins iders? Passports info for US pres idential candidates were
not s tolen by hackers ...

And even if security breach is not of concern (? ?) - how about
system stability? There is no guarantees that some implementation
would not send a given packet or data. When functioning properly,
but specifically when malfunctioning for what ever reason.

The Future

• Implementations are not created equal so why use the same test cases for each?

• Step away from deterministic methods (and no, inserting a “random” value does not give you the
necessary non-determinism)

• Input space HUGE, so intelligent selection of test points required.

• The implementation is speaking, why is no one listening? Here is where we can ++intelligence

• Real-time directed fuzzing based on DUT feedback. Get smart, use much more feed back from previous
tests to direct test case GENERATION.

• Hurdles

• How do you modify the generative model based on DUT feedback?

• How do you control the data domains based on DUT feedback?

• How do you collect feedback?

• Data Domain control – control with mixed-strength covering arrays

• Structure control – heavily attributed syntactic generator

• Feedback collection – all based on monitoring baby

Bone to be wild - Put the “ART” in Fuzzing
SMART

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• A covering array algorithm takes a list of domains and generates a subset
of the test space containing all parameter combinations of a certain type

• Consider the following 2-covering example:

• Call ::= CallerOS ServerOS CalleeOS;

• CallerOS ::= 'Macintosh';

• CallerOS ::= 'Windows';

• ServerOS ::= 'Linux';

• ServerOS ::= 'Macintosh';

• ServerOS ::= 'Windows';

• CalleeOS ::= 'Macintosh';

• CalleeOS ::= 'Windows';

The Choice - Domain Control: Covering
Arrays

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

CallerOS ServerOS CalleeOS
1 Macintosh Linux Macintosh

2 Macintosh Linux Windows
3 Macintosh SunOS Macintosh

4 Macintosh SunOS Windows
5 Macintosh Windows Macintosh
6 Macintosh Windows Windows

7 Windows Linux Macintosh
8 Windows Linux Windows
9 Windows SunOS Macintosh

10 Windows SunOS Windows
11 Windows Windows Macintosh
12 Windows Windows Windows

Language of Call Grammar

CallerOS CalleeOS
Macintosh Macintosh
Macintosh Windows

Windows Macintosh
Windows Windows

CallerOS ServerOS
Macintosh Linux
Macintosh SunOS
Macintosh Windows

Windows Windows
Windows SunOS
Windows Windows

CalleeOS ServerOS
Macintosh Linux
Macintosh SunOS
Macintosh Windows
Windows Windows

Windows SunOS
Windows Windows

/index.php?title=The_Choice_%28Farscape_episode%29&action=edit

• Traditionally, covering arrays apply a single strength to all test domains

• The previous example applied strength two across all three domains

• Mixed-strength covering arrays allow multiple specifications, with each specification having a different
strength that is applied to a subset of the domains

• Notation: If we have N domains D0,D1,…,Dn-1:

• ({j,k,…,l}, m) represents an m-strength cover of the domains j,k,…,l ε {0,1,..n-1}

• In the previous example, the 2-cover of the 3 domains has specification({0,1,2},2)

• Example:

Fractures - Domain Control: Mixed-Strength
Covering Arrays

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

CallerOS ServerOS CalleeOS
Macintosh Linux Macintosh

Macintosh SunOS Windows
Windows Windows Macintosh
Windows Windows Windows

Satisfies ({0,2},2) and ({1},1)

CallerOS CalleeOS
Macintosh Macintosh

Macintosh Windows
Windows Macintosh
Windows Windows

({0,2},2)

CallerOS CalleeOS
Macintosh Macintosh

Macintosh Windows
Windows Macintosh
Windows Windows

({0,2},2)

• Attribute grammars to describe a generic language

• Zeros Grammar:
Zeros ::= '0';
Zeros ::= '0' Zeros;

S ample Derivation: Zeros '0' Zeros '00' Zeros '000'→ → →
Language S ize: Infinite

• Automated way of modifying the test language is to use “tags”

• Tagged Zeros Grammar:
{rDepth 3} Zeros ::= '0';
Zeros ::= '0' Zeros;
Language: {'0','00', '000', '0000'}

• In practice, the elements generated are protocol test sequence (semantically meaningful
sequence of PDU’s) TEMPLATES

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Mental as anything - Structural Control: Tagged
Syntactic Generator

Common Tags Employed:

• Depth limit: limits the depth of the language tree

• Recursion depth: limits the number of times a recursive rule can call itself

• Count limit: limits the number of terminals strings returned by a rule

• Balance control: limits the difference between path lengths in the language tree.

• Rule weights: allow statistical control over the selection of rules with the same left hand side.

• Covering arrays: combinatorial selection from the combinations generated by the right hand side of a rule.

• General rule guards: allow activation/deactivation of a rule based on a boolean condition.

• Embedded code: allows insertion of arbitrary software code which is executed during generation.

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Nerve - Structural Control: Tagged Syntactic
Generator

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Till the blood runs clear - Monitoring – Generic
Flow Model

• Trying to answer some usual fuzzing challenges

• Optimizing input space to run most optimal tests first

• Detect and fuzz unknown code blocks (==unspecified (protocol) functionality)

• Monitor binary (or source code)

• Start from random

• By monitoring binary, modify inputs to gain different execution paths; become
aware of protocol structure

• NOTE: Binary and source are different

Unrealized reality – behavioural analysis

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Scratch 'n sniff – behavioural analysis

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Single byte inputs seem
to cause execution of
roughly the same code
block

Here however then at
minimum 2 byte input
with 0x01 as a leading
byte will cause
execution to branch to
different section of code

Continue to modify inputs based on feedback
from processes behaviour to map inputs into
those that get us to parts of code we haven't
yet been able to get (to boldly go where no
execution has gone ever before ;)

Monitor process and what parts of
its code are executed

• “Theoretically” perfect

• For now not a holy grail - works for simple protocols

• CRCs and cryptography are challenges

• Complex state machines another...

• Input space size and injection speed limits usability

• Manually used a very powerful tool – however to reap real
benefits – automation is the key

Promises – behavioural analysis

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Alternative to and step away from
model based methods

• Learn protocol structure and model to
optimize fuzzing from (large) sample
of example traffic/data

Natural election – into the future with genetic pattern matching

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

[Image from images.google.com]

DNA mad scientist – into the future with
genetic pattern matching

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• OUPSG PROTOS Genome
has been researching this
since 2004-
(Codenomicon research
partner at University of Oulu)

• Very good results on static
content

• Just out: PROTOS Genome
c10 - Archive files

• Like 2001 – almost everything
breaks – again :)

Green eyed monster – into the future with
genetic pattern matching

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Meltdown – into the future with genetic
pattern matching

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

• Its kind of obvious, but...

• All that was presented above is good alone...

• BUT what if you would combine them?

• Granular feedback directs model and partitions input domain

• Genetic pattern matching to learn and direct fuzzing from existing traffic/data

• Models and rule library to aid in/augment both

• Start and stand back, spawns like an infection, learning,
adapting, crippling – the “perfect” fuzz

• Not today, but stay tuned...

They've got a secret - Oh by the way...

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

Demonstration

• Oulu University Secure Programming Group (OUSPG)
extension of Codenomicon research labs. OUPSG lead by co-
founder of Codenomicon

• Demonstrate the effects of OUSPG PROTOS Genome c10
archives test suite

• Test material release coordinated through CERT/FI (Ficora)
and CPNI (public release 2008-03-17)

• Vendor statements available at
URL: https://www.cert.fi/haavoittuvuudet/joint-advisory-archive-formats.html

• Test suite available at
URL: http://www.ee.oulu.fi/research/ouspg/protos/testing/c10/archive/

Constellation of doubt - demo

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

https://www.cert.fi/haavoittuvuudet/joint-advisory-archive-formats.html
http://www.ee.oulu.fi/research/ouspg/protos/testing/c10/archive/

 Thank you!

http://www.codenomicon.com/

http://www.wurldtech.com/

Thanks for sharing - Questions?

COPYRIGHT (C) in 2008 - CODENOMICON & WURLDTECH

http://www.codenomicon.com/
http://www.wurldtech.com/

